JAGGED Controls Growth Anisotropy and Coordination between Cell Size and Cell Cycle during Plant Organogenesis

نویسندگان

  • Katharina Schiessl
  • Swathi Kausika
  • Paul Southam
  • Max Bush
  • Robert Sablowski
چکیده

BACKGROUND In all multicellular organisms, the links between patterning genes, cell growth, cell cycle, cell size homeostasis, and organ growth are poorly understood, partly due to the difficulty of dynamic, 3D analysis of cell behavior in growing organs. A crucial step in plant organogenesis is the emergence of organ primordia from the apical meristems. Here, we combined quantitative, 3D analysis of cell geometry and DNA synthesis to study the role of the transcription factor JAGGED (JAG), which functions at the interface between patterning and primordium growth in Arabidopsis flowers. RESULTS The floral meristem showed isotropic growth and tight coordination between cell volume and DNA synthesis. Sepal primordia had accelerated cell division, cell enlargement, anisotropic growth, and decoupling of DNA synthesis from cell volume, with a concomitant increase in cell size heterogeneity. All these changes in growth parameters required JAG and were genetically separable from primordium emergence. Ectopic JAG activity in the meristem promoted entry into S phase at inappropriately small cell volumes, suggesting that JAG can override a cell size checkpoint that operates in the meristem. Consistent with a role in the transition from meristem to primordium identity, JAG directly repressed the meristem regulatory genes BREVIPEDICELLUS and BELL 1 in developing flowers. CONCLUSIONS We define the cellular basis for the transition from meristem to organ identity and identify JAG as a key regulator of this transition. JAG promotes anisotropic growth and is required for changes in cell size homeostasis associated with accelerated growth and the onset of differentiation in organ primordia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple protocol for plant regeneration of Lilium ledebourii using transverse thin cell layer

Transverse thin cell layer sections excised from in vitro scales of Lilium ledebourii were cultured on Murashige and Skoog (MS) medium supplemented with various plant growth regulators (PGRs) at different concentrations. Although, bulblets were produced on PGRfree MS medium during organogenesis, addition of 0.25 mg l-1 6-benzyladenine or 5.0 mg l-1 indole-3-acetic acid to the medium increased t...

متن کامل

Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis.

The control of cell proliferation during organogenesis plays an important role in initiation, growth, and acquisition of the intrinsic size of organs in higher plants. To understand the developmental mechanism that controls intrinsic organ size by regulating the number and extent of cell division during organogenesis, we examined the function of the Arabidopsis regulatory gene AINTEGUMENATA (AN...

متن کامل

Determinants of Notch-3 receptor expression and signaling in vascular smooth muscle cells: implications in cell-cycle regulation.

The Notch family of receptors and ligands plays an important role in cell fate determination, vasculogenesis, and organogenesis. Mutations of the Notch-3 receptor result in an arteriopathy that predisposes to early-onset stroke. However, the functional role of the Notch signaling pathway in adult vascular smooth muscle cells (VSMCs) is poorly characterized. This study documents that the Notch-3...

متن کامل

Plant Development: From Biochemistry to Biophysics and Back

Since plant cells cannot move relative to each other, plant organogenesis mainly depends on the strict coordination of cell growth and proliferation. Recent work suggests that this implies a subtle combination of biochemical and physical interactions between neighboring cells.

متن کامل

The Specification of Geometric Edges by a Plant Rab GTPase Is an Essential Cell-Patterning Principle During Organogenesis in Arabidopsis

Plant organogenesis requires control over division planes and anisotropic cell wall growth, which each require spatial patterning of cells. Polyhedral plant cells can display complex patterning in which individual faces are established as biochemically distinct domains by endomembrane trafficking. We now show that, during organogenesis, the Arabidopsis endomembrane system specifies an important...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2012